Acoustic detection of resonance-enhanced multiphoton ionization for spatially resolved temperature measurement

Opt Lett. 2017 Sep 1;42(17):3415-3418. doi: 10.1364/OL.42.003415.

Abstract

In this Letter, acoustic detection of resonance-enhanced multiphoton ionization (A-REMPI) is characterized and used to measure spatially resolved O2 rotational temperature in air. The acoustic signal is generated using O2 REMPI in air and is detected by a single microphone operating within the audible range. Compared to electron number measurements by coherent microwave scattering, nonlinear light absorption and subsequent local pressure perturbation are captured by the microphone. A typical acoustic cycle of compression and rarefication of the acoustic wave is observed in the A-REMPI. Since the pressure perturbation can be regarded as close to thermodynamic equilibrium, the rotational temperature measured by A-REMPI is lower and closer to the realistic condition.