Effects of alkaline catalysts on acetone-based organosolv pretreatment of rice straw

3 Biotech. 2017 Oct;7(5):340. doi: 10.1007/s13205-017-0969-1. Epub 2017 Sep 21.

Abstract

Organosolv is an effective pretreatment strategy for increasing digestibility of lignocellulosic materials owing to selectivity of solvents on separating biopolymeric constituents of plant biomass. In the present work, a novel low-temperature alkali-catalyzed organosolv pretreatment of rice straw was studied. The effects of alkaline catalysts (i.e., NaOH, ammonia, and tri-ethylamine) and solvent types (i.e., acetone, ethanol, and water) were carried out. Addition of alkalis led to increasing sugar from enzymatic hydrolysis while acetone was found to be superior to ethanol and water on selectivity towards cellulose preservation. The optimal alkaline-catalyzed pretreatment reaction contained 5% (w/v) NaOH in an aqueous-acetone mixture (1:4) at 80 °C for 5 min. A glucose yield of 913 mg/g of pretreated biomass was achieved, equivalent to a maximal glucose recovery of 93.0% from glucan in the native biomass. Scanning electron microscope revealed efficient removal of non-cellulosic components, resulting in exposed cellulose microfibers with a reduced crystallite size as determined by X-ray diffraction. With potential on obtaining high-quality lignin, the work demonstrated potential of the novel low-temperature alkaline-catalyzed acetone-based organosolv process for pretreatment of lignocellulosic materials in biorefineries.

Keywords: Alkaline catalyst; Biorefinery; Enzymatic hydrolysis; Organosolv pretreatment; Rice straw.