TDP-43 regulates cancer-associated microRNAs

Protein Cell. 2018 Oct;9(10):848-866. doi: 10.1007/s13238-017-0480-9. Epub 2017 Sep 26.

Abstract

Aberrant regulation of miRNA genes contributes to pathogenesis of a wide range of human diseases, including cancer. The TAR DNA binding protein 43 (TDP-43), a RNA/DNA binding protein associated with neurodegeneration, is involved in miRNA biogenesis. Here, we systematically examined miRNAs regulated by TDP-43 using RNA-Seq coupled with an siRNA-mediated knockdown approach. TDP-43 knockdown affected the expression of a number of miRNAs. In addition, TDP-43 down-regulation led to alterations in the patterns of different isoforms of miRNAs (isomiRs) and miRNA arm selection, suggesting a previously unknown role of TDP-43 in miRNA processing. A number of TDP-43 associated miRNAs, and their candidate target genes, are associated with human cancers. Our data reveal highly complex roles of TDP-43 in regulating different miRNAs and their target genes. Our results suggest that TDP-43 may promote migration of lung cancer cells by regulating miR-423-3p. In contrast, TDP-43 increases miR-500a-3p expression and binds to the mature miR-500a-3p sequence. Reduced expression of miR-500a-3p is associated with poor survival of lung cancer patients, suggesting that TDP-43 may have a suppressive role in cancer by regulating miR-500a-3p. Cancer-associated genes LIF and PAPPA are possible targets of miR-500a-3p. Our work suggests that TDP-43-regulated miRNAs may play multifaceted roles in the pathogenesis of cancer.

Keywords: TDP-43; cancer; miRNA; migration; prognosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cells, Cultured
  • DNA-Binding Proteins / metabolism*
  • Electrophoretic Mobility Shift Assay
  • Humans
  • Immunoprecipitation
  • Mice
  • MicroRNAs / genetics*
  • MicroRNAs / metabolism*
  • Neoplasms / genetics*
  • Neoplasms / metabolism*

Substances

  • DNA-Binding Proteins
  • MicroRNAs
  • TARDBP protein, human