MicroRNA-126 inhibits cell viability and invasion in a diabetic retinopathy model via targeting IRS-1

Oncol Lett. 2017 Oct;14(4):4311-4318. doi: 10.3892/ol.2017.6695. Epub 2017 Aug 1.

Abstract

Diabetic retinopathy (DR) is a sight-threatening complication of diabetes. IRS-1 was predicted to be the target gene of microRNA-126 (miR-126). The present study was designed to illustrate the involvement of miR-126 in the regulation of DR via targeting IRS-1. The present study revealed that the expression of miR-126 was significantly decreased while IRS-1 expression was increased in endothelial cells (ECs) and retinal pericytes (RPs) from a DR mouse model compared with healthy controls. Furthermore, a luciferase reporter assay confirmed the interaction between miR-126 and IRS-1. Following transfection with anmiR-126 mimic or miR-126 inhibitor, overexpression of miR-126 was demonstrated to suppress the invasion and viability of ECs and RPs and to inhibit the IRS-1 and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway protein expression levels, with inhibition of miR-126 leading to reverse results. Furthermore, transfection with small interfering RNA targeting IRS-1 altered the miR-126-induced effects observed in ECs, indicating that miR-126 may suppress angiogenesis in DR via inhibition of IRS-1 expression. Taken together, the results of the present study suggested that miR-126 affected the expression of IRS-1, resulting in downregulated expression of PI3K/Akt pathway proteins, and also suppressed cell invasion and viability. These results may provide a potential therapeutic strategy for DR.

Keywords: diabetic retinopathy; insulin receptor substrate 1; microRNA-126; phosphoinositide 3-kinase/protein kinase B pathway.