Tuning Excitonic Properties of Monolayer MoS2 with Microsphere Cavity by High-Throughput Chemical Vapor Deposition Method

Small. 2017 Nov;13(42). doi: 10.1002/smll.201701694. Epub 2017 Sep 20.

Abstract

Tuning the optical properties of 2D direct bandgap semiconductors is crucial for applications in photonic light source, optical communication, and sensing. In this work, the excitonic properties of molybdenum disulphide (MoS2 ) are successfully tuned by directly depositing it onto silica microsphere resonators using chemical vapor deposition method. Multiple whispering gallery mode (WGM) peaks in the emission wavelength range of ≈650-750 nm are observed under continuous wave excitation at room temperature. Time-resolved photoluminescence (TRPL) and femtosecond transient absorption (TA) spectroscopy are conducted to study light-matter interaction dynamics of the MoS2 microcavities. TRPL study suggests radiative recombination rate of carrier-phonon scattering and interband transition processes in MoS2 is enhanced by a factor of ≈1.65 due to Purcell effect in microcavities. TA spectroscopy study shows modulation of the interband transition process mainly occurs at PB-A band with an estimated F ≈ 1.60. Furthermore, refractive index sensing utilizing WGM peaks of MoS2 is established with sensitivity up to ≈150 nm per refractive index unit. The present work provides a large-scale and straightforward method for coupling atomically thin 2D gain media with cavities for high-performance optoelectronic devices and sensors.

Keywords: MoS2; Purcell effect; chemical vapor deposition; refractive index sensing; whispering gallery mode.

Publication types

  • Research Support, Non-U.S. Gov't