A simple and rapid identification method for newly emerged porcine Deltacoronavirus with loop-mediated isothermal amplification

Biol Res. 2017 Sep 21;50(1):30. doi: 10.1186/s40659-017-0135-6.

Abstract

Background: Porcine Deltacoronavirus (PDCoV) is a newly emerged enteropathogenic coronavirus that causes diarrhea and mortality in neonatal piglets. PDCoV has spread to many countries around the world, leading to significant economic losses in the pork industry. Therefore, a rapid and sensitive method for detection of PDCoV in clinical samples is urgently needed.

Results: In this study, we developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay specific for nucleocapsid gene to diagnose and monitor PDCoV infections. The detection limit of RT-LAMP assay was 1 × 101 copies of PDCoV, which was approximately 100-fold more sensitive than gel-based one-step reverse transcription polymerase chain reaction (RT-PCR). This assay could specifically amplify PDCoV and had no cross amplification with porcine epidemic diarrhea virus (PEDV), transmissible gastroenteritis virus (TGEV), porcine kobuvirus (PKoV), porcine astrovirus (PAstV), porcine reproductive and respiratory syndrome virus (PRRSV), classic swine fever virus (CSFV), and porcine circovirus type 2 (PCV2). By screening a panel of clinical specimens (N = 192), this method presented a similar sensitivity with nested RT-PCR and was 1-2 log more sensitive than conventional RT-PCR in detection of PDCoV.

Conclusions: The RT-LAMP assay established in this study is a potentially valuable tool, especially in low-resource laboratories and filed settings, for a rapid diagnosis, surveillance, and molecular epidemiology investigation of PDCoV infections. To the best of our knowledge, this is the first work for detection of newly emerged PDCoV with LAMP technology.

Keywords: Porcine Deltacoronavirus (PDCoV); RT-LAMP; Rapid diagnosis.

MeSH terms

  • Animals
  • Coronaviridae / isolation & purification*
  • Coronavirus Infections / diagnosis
  • Coronavirus Infections / veterinary
  • Coronavirus Infections / virology*
  • Nucleic Acid Amplification Techniques / veterinary
  • Polymerase Chain Reaction / veterinary
  • Sensitivity and Specificity
  • Swine
  • Swine Diseases / diagnosis
  • Swine Diseases / virology*