Osmotic dehydration effects on major and minor components of chestnut (Castanea sativa Mill.) slices

J Food Sci Technol. 2017 Aug;54(9):2694-2703. doi: 10.1007/s13197-017-2706-5. Epub 2017 May 30.

Abstract

The effect of osmotic dehydration (OD) conditions (temperature, time and sucrose concentration) on some nutritional parameters, soluble sugars, organic acids, fatty acids and vitamin E composition of chestnut slices was studied. Temperature at 60 °C and contact time of 7.5 h decreased significantly both protein (in 20 and 15%) and fat (in 25 and 20%) contents when compared to 30 °C and contact time of 2.5 h, simultaneously with the incorporation of sugars from the osmotic medium. An increase in temperature from 30 to 60 °C and contact time from 2.5 to 7.5 h also changed amylose percentage from 12 to 17 g/100 g of starch, suggesting modifications on starch conformation. Concerning organic acids, an increase in temperature from 30 to 60 °C induced thermal degradation of citric (54% of loss), malic (36% of loss) and ascorbic (23% of loss) acids. Temperature and sugar concentration did not affect significantly fat composition, particularly PUFA, the main fatty acid class, while contact times of 7.5 h led to the partial oxidation of linolenic acid (17% of loss when compared to 2.5 h). A 50% decrease was also observed on vitamin E content when temperature increased from 30 to 60 °C. Thus, OD might cause changes on the chemical composition of chestnut slices, requiring low temperature and contact times to avoid loss of important bioactive components such as ω-3 fatty acids (ex. linolenic acid) and vitamin E.

Keywords: Castanea sativa Miller; Lipid profile; Organic acids composition; Osmotic dehydration; Proximate composition; Sugar profile.