Magnetic field effect in natural cryptochrome explored with model compound

Sci Rep. 2017 Sep 19;7(1):11892. doi: 10.1038/s41598-017-10356-4.

Abstract

Many animals sense the Earth's magnetic-field and use it for navigation. It is proposed that a light-dependent quantum effect in cryptochrome proteins, residing in the retina, allows for such an iron-free spin-chemical compass. The photochemical processes, spin-dynamics and its magnetic field dependence in natural cryptochrome are not fully understood by the in vivo and in vitro studies. For a deeper insight into these biophysical mechanisms in cryptochrome, we had introduced a flavin-tryptophan dyad (F10T). Here we present the magnetic field dependence of 1H photo-CIDNP NMR on F10T and a theoretical model for low-field photo-CIDNP of F10T. This model provides mixing mechanism of energy-levels and spin-dynamics at low magnetic fields. Photo-CIDNP has been observed even at Earth's magnetic field (~0.05 mT). These experiments prove F10T to be an excellent model compound establishing the key mechanism of avian-magnetoreception and provide insight into the optimal behaviour of cryptochrome at Earth's magnetic field.

Publication types

  • Research Support, Non-U.S. Gov't