Self-Powered Electrospinning System Driven by a Triboelectric Nanogenerator

ACS Nano. 2017 Oct 24;11(10):10439-10445. doi: 10.1021/acsnano.7b05626. Epub 2017 Sep 22.

Abstract

Broadening the application area of the triboelectric nanogenerators (TENGs) is one of the research emphases in the study of the TENGs, whose output characteristic is high voltage with low current. Here we design a self-powered electrospinning system, which is composed of a rotating-disk TENG (R-TENG), a voltage-doubling rectifying circuit (VDRC), and a simple spinneret. The R-TENG can generate an alternating voltage up to 1400 V. By using a voltage-doubling rectifying circuit, a maximum constant direct voltage of 8.0 kV can be obtained under the optimal configuration and is able to power the electrospinning system for fabricating various polymer nanofibers, such as polyethylene terephthalate (PET), polyamide-6 (PA6), polyacrylonitrile (PAN), polyvinylidene difluoride (PVDF), and thermoplastic polyurethanes (TPU). The system demonstrates the capability of a TENG for high-voltage applications, such as manufacturing nanofibers by electrospinning.

Keywords: electrospinning system; high voltage; nanofibers; triboelectric nanogenerator; voltage-doubling rectifying circuit.

Publication types

  • Research Support, Non-U.S. Gov't