A late Holocene pollen record from proglacial Oblong Tarn, Mount Kenya

PLoS One. 2017 Sep 19;12(9):e0184925. doi: 10.1371/journal.pone.0184925. eCollection 2017.

Abstract

High-elevation ecosystems, such as those on Mount Kenya are undergoing significant changes, with accelerated glacial ice losses over the twentieth century creating new space for alpine plants to establish. These ecosystems respond rapidly to climatic variability and within decades of glacial retreat, Afroalpine pioneering taxa stabilize barren land and facilitate soil development, promoting complex patches of alpine vegetation. Periglacial lake sediment records can be used to examine centennial and millennial scale variations in alpine and montane vegetation compositions. Here we present a 5300-year composite pollen record from an alpine tarn (4370 m asl) in the Hausberg Valley of Mount Kenya. Overall, the record shows little apparent variation in the pollen assemblage through time with abundant montane forest taxa derived and transported from mid elevations, notably high abundances of aerophilous Podocarpus pollen. Afroalpine taxa included Alchemilla, Helichrysum and Dendrosenecio-type, reflecting local vegetation cover. Pollen from the ericaceous zone was present throughout the record and Poaceae percentages were high, similar to other high elevation pollen records from eastern Africa. The Oblong Tarn record pollen assemblage composition and abundances of Podocarpus and Poaceae since the late Holocene (~4000 cal yr BP-present) are similar to pollen records from mid-to-high elevation sites of nearby high mountains such as Mount Elgon and Kilimanjaro. These results suggest a significant amount of uphill pollen transport with only minor apparent variation in local taxa. Slight decreasing trends in alpine and ericaceous taxonomic groups show a long-term response to global late Holocene cooling and a step decrease in rate of change estimated from the pollen assemblages at 3100 cal yr BP in response to regional hydroclimatic variability. Changes in the principal component axis scores of the pollen assemblage were coherent with an independent mid-elevation temperature reconstruction, which supported the strong influence of uphill pollen transport from montane forest vegetation and association between temperatures and montane vegetation dynamics. Pollen accumulation rates showed some variability related to minerogenic sediment input to the lake. The Oblong Tarn pollen record provides an indication of long term vegetation change atop Mount Kenya showing some decreases in local alpine and ericaceous taxa from 5300-3100 cal yr BP and minor centennial-scale variability of montane taxa from mid elevation forests. The record highlights potentials, challenges and opportunities for the use of proglacial lacustrine sediment to examine vegetation change on prominent mountain massifs.

Publication types

  • Historical Article

MeSH terms

  • Climate
  • Ecosystem
  • Fossils / history
  • Geologic Sediments / analysis
  • History, Ancient
  • Kenya
  • Pollen / anatomy & histology*
  • Pollen / chemistry
  • Trees / growth & development
  • Trees / physiology

Grants and funding

CCM was supported through the Resilience in East African Landscapes (REAL) project funded by a European Commission Marie Curie Initial Training Network grant (FP7-PEOPLE-2013-ITN project number 606879) and the Adaptation and Resilience to Climate Change (ARCC) under the sustainability and resilience - tackling climate and environmental changes funded by Vetenskapsrådet, Formas, Sida (2016-06355). KG is supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.