3D Nanostructured Palladium-Functionalized Graphene-Aerogel-Supported Fe3O4 for Enhanced Ru(bpy)32+-Based Electrochemiluminescent Immunosensing of Prostate Specific Antigen

ACS Appl Mater Interfaces. 2017 Oct 11;9(40):35260-35267. doi: 10.1021/acsami.7b11458. Epub 2017 Sep 27.

Abstract

We developed a novel Ru(bpy)32+-based electrochemiluminescence (ECL) immunosensor utilizing palladium nanoparticle (Pd NP)-functionalized graphene-aerogel-supported Fe3O4 (FGA-Pd) for real-sample analysis of prostate specific antigen (PSA). 3D nanostructured FGA-Pd, as a novel ECL carrier, was prepared by in situ reduction. Large amounts of Ru(bpy)32+ could combine with FGA-Pd via electrostatic interaction to establish a brand-new ECL emitter (Ru@FGA-Pd) for improving ECL efficiency. The obtained Ru@FGA-Pd composite was utilized to label the secondary antibody, which generated strong ECL signals with tripropylamine (TPrA) as a coreactant. Furthermore, we demonstrated that the participation of Pd NPs endowed FGA with favorable electrocatalytic ability in the luminescence process to produce more excited state [Ru(bpy)32+]* for realizing desirable signal amplification. In addition, the primary antibody was captured by gold nanoparticle (Au NP)-functionalized Fe2O3 nanodendrites (Au-FONDs), which possessed good electrical conductivity and favorable biocompatibility. Under optimum conditions, the fabricated sandwich-type ECL immunosensor showed a sensitive response to PSA with a low detection limit of 0.056 pg/mL (S/N = 3) and a calibration range of 0.0001-50 ng/mL. Featuring favorable selectivity, stability, and repeatability, the proposed immunosensor is expected to blaze a novel trail for the real sample detection of PSA and other biomarkers.

Keywords: Fe2O3 nanodendrites; electrochemiluminescence immunosensor; graphene aerogel supported Fe3O4; palladium nanoparticles; prostate specific antigen.