Targeting breast cancer stem cells by novel HDAC3-selective inhibitors

Eur J Med Chem. 2017 Nov 10:140:42-51. doi: 10.1016/j.ejmech.2017.08.069. Epub 2017 Sep 1.

Abstract

Although histone deacetylase (HDAC) inhibitors have been known to suppress the cancer stem cell (CSC) population in multiple types of cancer cells, it remains unclear which HDAC isoforms and corresponding mechanisms contribute to this anti-CSC activity. Pursuant to our previous finding that HDAC8 regulates CSCs in triple-negative breast cancer (TNBC) cells by targeting Notch1 stability, we investigated related pathways and found HDAC3 to be mechanistically linked to CSC homeostasis by increasing β-catenin expression through the Akt/GSK3β pathway. Accordingly, we used a pan-HDAC inhibitor, AR-42 (1), as a scaffold to develop HDAC3-selective inhibitors, obtaining the proof-of-concept with 18 and 28. These two derivatives exhibited high potency and isoform selectivity in HDAC3 inhibition. Equally important, they showed in vitro and/or in vivo efficacy in suppressing the CSC subpopulation of TNBC cells via the downregulation of β-catenin.

Keywords: Cancer stem cell (CSC); Histone deacetylase 3 (HDAC3); Triple-negative breast cancer (TNBC); β-Catenin.

MeSH terms

  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Breast Neoplasms / drug therapy*
  • Breast Neoplasms / metabolism
  • Breast Neoplasms / pathology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • Female
  • Histone Deacetylase Inhibitors / chemical synthesis
  • Histone Deacetylase Inhibitors / chemistry
  • Histone Deacetylase Inhibitors / pharmacology*
  • Histone Deacetylases / metabolism*
  • Humans
  • Molecular Structure
  • Neoplastic Stem Cells / drug effects*
  • Structure-Activity Relationship

Substances

  • Antineoplastic Agents
  • Histone Deacetylase Inhibitors
  • Histone Deacetylases
  • histone deacetylase 3