Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria

Carbohydr Polym. 2017 Nov 1:175:87-95. doi: 10.1016/j.carbpol.2017.06.119. Epub 2017 Jun 30.

Abstract

Novel carboxymethyl cellulose-chitosan (CMC-Cht) hybrid micro- and macroparticles were successfully prepared in aqueous media either by drop-wise addition or via nozzle-spray methods. The systems were either physically or chemically crosslinked using genipin as the reticulation agent. The macroparticles (ca. 2mm) formed are found to be essentially of the core-shell type, while the microparticles (ca. 5μm) are apparently homogeneous. The crosslinked particles are robust, thermally resistant and less sensitive to pH changes. On the other hand, the physical systems are pH sensitive presenting a remarkable swelling at pH 7.4, while little swelling is observed at pH 2.4. Furthermore, model probiotic bacteria (Lactobacillus rhamnosus GG) was for the first time successfully encapsulated in the CMC-Cht based particles with acceptable viability count. Overall, the systems developed are highly promising for probiotic encapsulation and potential delivery in the intestinal tract with the purpose of modulating gut microbiota and improving human health.

Keywords: Carboxymethyl cellulose; Chitosan; Encapsulation; Genipin; Micro/macroparticles; Probiotic.

MeSH terms

  • Carboxymethylcellulose Sodium / chemistry*
  • Chitosan / chemistry*
  • Drug Carriers / chemistry*
  • Lactobacillus
  • Probiotics / administration & dosage*

Substances

  • Drug Carriers
  • Chitosan
  • Carboxymethylcellulose Sodium