Anisotropic Fluctuations in the Ribosome Determine tRNA Kinetics

J Phys Chem B. 2017 Nov 30;121(47):10593-10601. doi: 10.1021/acs.jpcb.7b06828. Epub 2017 Oct 2.

Abstract

The ribosome is a large ribonucleoprotein complex that is responsible for the production of proteins in all organisms. Accommodation is the process by which an incoming aminoacyl-tRNA (aa-tRNA) molecule binds the ribosomal A site, and its kinetics has been implicated in the accuracy of tRNA selection. In addition to rearrangements in the aa-tRNA molecule, the L11 stalk can undergo large-scale anisotropic motions during translation. To explore the potential impact of this protruding region on the rate of aa-tRNA accommodation, we used molecular dynamics simulations with a simplified model to evaluate the free energy as a function of aa-tRNA position. Specifically, these calculations describe the transition between A/T and elbow-accommodated (EA) configurations (∼20 Å displacement). We find that the free-energy barrier associated with elbow accommodation is proportional to the degree of mobility exhibited by the L11 stalk. That is, when L11 is more rigid, the free-energy barrier height is decreased. This effect arises from the ability of L11 to confine, and thereby destabilize, the A/T ensemble. In addition, when elongation factor Tu (EF-Tu) is present, the A/T ensemble is further destabilized in an L11-dependent manner. These results provide a framework that suggests how next-generation experiments may precisely control the dynamics of the ribosome.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Anisotropy
  • Kinetics
  • Molecular Dynamics Simulation
  • RNA, Transfer / chemistry*
  • Ribosomes / chemistry*
  • Thermodynamics

Substances

  • RNA, Transfer