RASSF6 downregulation promotes the epithelial-mesenchymal transition and predicts poor prognosis in colorectal cancer

Oncotarget. 2017 Jul 12;8(33):55162-55175. doi: 10.18632/oncotarget.19181. eCollection 2017 Aug 15.

Abstract

Distant metastasis is the primary barrier for the successful treatment of patients with colorectal cancer, and thus, searching for new therapeutic targets by further exploring the molecular mechanisms of colorectal cancer metastasis is important. In this study, we investigated the biological and clinical significance of RASSF6 in colorectal cancer as well as the underlying molecular mechanisms. We found that low RASSF6 expression corresponds to a poor prognosis in colorectal cancer patients, and low RASSF6 expression is distinctly associated with tumour progression. Our in vitro analysis revealed that RASSF6 suppresses the proliferation and metastasis of DLD1 cells, and RASSF6 knockdown in HCT116 cells confirmed these observations. Our mechanistic investigation revealed that RASSF6 inhibits the expression of the classical target genes of Wnt signalling, as demonstrated by the reduced expression of TCF1, c-Jun, and c-Myc in RASSF6-overexpressing DLD1 stable cell lines. Furthermore, we show that RASSF6 functions as a negative regulator of the epithelial-mesenchymal transition; the expression levels of the epithelial markers ZO-1 and E-cadherin were increased, while the expression level of the mesenchymal marker Snail was decreased in a RASSF6-overexpressing DLD1 cell line. Additionally, rescue assays revealed that the activation of Wnt signalling by LiCl treatment impaired the inhibitory effect of RASSF6 on the proliferation and metastasis of colorectal cancer cells, which implies that RASSF6 suppresses the tumorigenicity of colorectal cancer cells at least in part through inhibiting Wnt signalling pathway. Collectively, these findings provide new perspectives for the future study of RASSF6 as a therapeutic target for colorectal cancer.

Keywords: EMT; RASSF6; Wnt; colorectal cancer; metastasis.