Reappraisal of Antimalarials in Interferonopathies: New Perspectives for Old Drugs

Curr Med Chem. 2018;25(24):2797-2810. doi: 10.2174/0929867324666170911162331.

Abstract

The story of antimalarials as antinflammatory drugs dates back several centuries. Chinin, the extract of the Cinchona bark, has been exploited since the 18th century for its antimalarial and antifebrile properties. Later, during the Second World War, the broad use of antimalarials allowed arguing their antirheumatic effect on soldiers. Since then, these drugs have been broadly used to treat Systemic Lupus Erythematosus, but, only recently, have the molecular mechanisms of action been partly clarified. Inhibitory action on vacuole function and trafficking has been considered for decades the main mechanism of the action of antimalarials, affecting the activation of phagocytes and dendritic cells. In addition, chloroquine is also known as a potent inhibitor of autophagy, providing another possible explanation of its antinflammatory action. However, much attention has been recently devoted to the action of antimalarials on the so-called cGASSTING pathway leading from the sensing of cytoplasmic nucleic acids to the production of type I interferons. This pathway is a fundamental mechanism of host defence, since it is able to detect microbial DNA and induce the type I interferon-mediated immune response. Of note, genetic defects in the degradation of nucleic acids lead to inappropriate cGAS-STING activation and inflammation. These disorders, called type I interferonopathies, represent a valuable model to study the antinflammatory potential of antimalarials. We will discuss possible development of antimalarials to improve the treatment of type I interferonopathies and likely multifactorial disorders characterised by interferon inflammation, such as Systemic Lupus Erythematosus.

Keywords: Antimalarials; Autoimmunity; Autoinflammatory diseases; Cyclic GMP-AMP Synthase; Interferon Signature; Interferonopathies; Systemic Lupus Erythematosus; Type I Interferons..

Publication types

  • Review

MeSH terms

  • Antimalarials / chemistry
  • Antimalarials / therapeutic use*
  • Autoimmune Diseases / drug therapy*
  • Autoimmune Diseases / pathology
  • Humans
  • Hydroxychloroquine / chemistry
  • Hydroxychloroquine / therapeutic use
  • Interferon Type I / metabolism*
  • Lupus Erythematosus, Systemic / drug therapy
  • Lupus Erythematosus, Systemic / pathology
  • Nucleotidyltransferases / antagonists & inhibitors
  • Nucleotidyltransferases / metabolism
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / metabolism
  • Rheumatic Diseases / drug therapy
  • Rheumatic Diseases / pathology
  • Toll-Like Receptor 9 / antagonists & inhibitors
  • Toll-Like Receptor 9 / metabolism

Substances

  • Antimalarials
  • Interferon Type I
  • Toll-Like Receptor 9
  • Hydroxychloroquine
  • Protein Serine-Threonine Kinases
  • TBK1 protein, human
  • Nucleotidyltransferases
  • cGAS protein, human