Intramolecular Electron Transfer in Frozen Solvents: Charge Transfer and Local Triplet States Population Dynamics Revealed by Dual Phosphorescence

J Phys Chem Lett. 2017 Oct 5;8(19):4659-4667. doi: 10.1021/acs.jpclett.7b02020. Epub 2017 Sep 14.

Abstract

In frozen solvents at 77 K, ultrafast (≤250 fs) photoinduced intramolecular electron transfer (ET) in bichromophoric donor-acceptor ([D-A]) diarylmethane lactones produces a covalently linked radical ion pair, 1[D•+-A•-]. Steady state and time-resolved luminescence measurements reveal that 1[D•+-A•-] decays to charge-separated (3[D•+-A•-]) and donor-centered ([3D*-A]) triplets, which display dual phosphorescence. 3[D•+-A•-] and [3D*-A] are formed in parallel via two intersystem crossing mechanisms: spin orbit charge transfer (SOCT) and hyperfine coupling (HFC), with solvent dependent branching ratio. The solvent drives the D-A alignment during the freezing process to adapt to increasing solvent polarity, producing inhomogeneous ground-state population distribution with solvent-dependent D-A exchange interaction, which plays a key role in partitioning into SOCT and HFC mechanisms. In polar glasses, a third phosphorescence band appears due to dissociative back ET in 3[D•+-A•-] resulting in excited open ring biradical.