Immunopurification of Acetylcholinesterase from Red Blood Cells for Detection of Nerve Agent Exposure

Chem Res Toxicol. 2017 Oct 16;30(10):1897-1910. doi: 10.1021/acs.chemrestox.7b00209. Epub 2017 Sep 25.

Abstract

Nerve agents and organophosphorus pesticides make a covalent bond with the active site serine of acetylcholinesterase (AChE), resulting in inhibition of AChE activity and toxic symptoms. AChE in red blood cells (RBCs) serves as a surrogate for AChE in the nervous system. Mass spectrometry analysis of adducts on RBC AChE could provide evidence of exposure. Our goal was to develop a method of immunopurifying human RBC AChE in quantities adequate for detecting exposure by mass spectrometry. For this purpose, we immobilized 3 commercially available anti-human acetylcholinesterase monoclonal antibodies (AE-1, AE-2, and HR2) plus 3 new monoclonal antibodies. The monoclonal antibodies were characterized for binding affinity, epitope mapping by pairing analysis, and nucleotide and amino acid sequences. AChE was solubilized from frozen RBCs with 1% (v/v) Triton X-100. A 16 mL sample containing 5.8 μg of RBC AChE was treated with a quantity of soman model compound that inhibited 50% of the AChE activity. Native and soman-inhibited RBC AChE samples were immunopurified on antibody-Sepharose beads. The immunopurified RBC AChE was digested with pepsin and analyzed by liquid chromatography tandem mass spectrometry on a 6600 Triple-TOF mass spectrometer. The aged soman-modified PheGlyGluSerAlaGlyAlaAlaSer (FGESAGAAS) peptide was detected using a targeted analysis method. It was concluded that all 6 monoclonal antibodies could be used to immunopurify RBC AChE and that exposure to nerve agents could be detected as adducts on the active site serine of RBC AChE.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.
  • Research Support, N.I.H., Extramural

MeSH terms

  • Acetylcholinesterase / immunology
  • Acetylcholinesterase / isolation & purification*
  • Acetylcholinesterase / metabolism
  • Erythrocytes / enzymology*
  • Humans
  • Immunoprecipitation*
  • Mass Spectrometry
  • Nerve Agents / analysis*

Substances

  • Nerve Agents
  • Acetylcholinesterase