Probabilistic n/γ discrimination with robustness against outliers for use in neutron profile monitors

Rev Sci Instrum. 2017 Aug;88(8):083504. doi: 10.1063/1.4996177.

Abstract

A method to stochastically discriminate neutron and γ-ray signals measured with a stilbene organic scintillator is proposed. Each pulse signal was stochastically categorized into two groups: neutron and γ-ray. In previous work, the Expectation Maximization (EM) algorithm was used with the assumption that the measured data followed a Gaussian mixture distribution. It was shown that probabilistic discrimination between these groups is possible. Moreover, by setting the initial parameters for the Gaussian mixture distribution with a k-means algorithm, the possibility of automatic discrimination was demonstrated. In this study, the Student's t-mixture distribution was used as a probabilistic distribution with the EM algorithm to improve the robustness against the effect of outliers caused by pileup of the signals. To validate the proposed method, the figures of merit (FOMs) were compared for the EM algorithm assuming a t-mixture distribution and a Gaussian mixture distribution. The t-mixture distribution resulted in an improvement of the FOMs compared with the Gaussian mixture distribution. The proposed data processing technique is a promising tool not only for neutron and γ-ray discrimination in fusion experiments but also in other fields, for example, homeland security, cancer therapy with high energy particles, nuclear reactor decommissioning, pattern recognition, and so on.