Electrostatic Self-Assembly of Sandwich-Like CoAl-LDH/Polypyrrole/Graphene Nanocomposites with Enhanced Capacitive Performance

ACS Appl Mater Interfaces. 2017 Sep 20;9(37):31699-31709. doi: 10.1021/acsami.7b04792. Epub 2017 Sep 11.

Abstract

A novel sandwich-like composite with ultrathin CoAl-layered double hydroxide (LDH) nanoplates electrostatically assembled on both sides of two-dimensional polypyrrole/graphene (PG) substrate has been successfully fabricated using facile hydrothermal techniques. The PG not only serves as an excellent conductive and structural scaffold to enhance the transmission of electrons and prevent aggregation of CoAl-LDH nanoplates but also contributes to the enhancement of the specific capacitance. Owing to the homogeneous dispersion of CoAl-LDH nanoplates and its intimate interaction with PG substrate, the resulting CoAl-LDH/PG nanocomposite material exhibits excellent capacitive performance, for example, enhanced gravimetric specific capacitance (864 F g-1 at 1 A g-1 ), high rate performance (75% retention at 20 A g-1), and excellent cycle life (almost no degradation in supercapacitor performance after 5000 cycles) in aqueous KOH solution. Furthermore, the assembled asymmetric capacitor is able to deliver a superhigh energy density of 46.8 Wh kg-1 at 1.2 kW kg-1 and maintain 90.1% of its initial capacitance after 10 000 cycles. These results indicate a rational assembly strategy toward a high-performance pseudocapacitive electrode material with excellent rate performance, high specific capacitance, and outstanding cycle stability.

Keywords: LDH; electrostatic self-assembly; graphene; polypyrrole; supercapacitor.