Molecular markers in keratins from Mysticeti whales for species identification of baleen in museum and archaeological collections

PLoS One. 2017 Aug 30;12(8):e0183053. doi: 10.1371/journal.pone.0183053. eCollection 2017.

Abstract

Baleen has been harvested by indigenous people for thousands of years, as well as collected by whalers as an additional product of commercial whaling in modern times. Baleen refers to the food-filtering system of Mysticeti whales; a full baleen rack consists of dozens of plates of a tough and flexible keratinous material that terminate in bristles. Due to its properties, baleen was a valuable raw material used in a wide range of artefacts, from implements to clothing. Baleen is not widely used today, however, analyses of this biomolecular tissue have the potential to contribute to conservation efforts, studies of genetic diversity and a better understanding of the exploitation and use of Mysticeti whales in past and recent times. Fortunately, baleen is present in abundance in museum natural history collections. However, it is often difficult or impossible to make a species identification of manufactured or old baleen. Here, we propose a new tool for biomolecular identification of baleen based on its main structural component alpha-keratin (the same protein that makes up hair and fingernails). With the exception of minke whales, alpha-keratin sequences are not yet known for baleen whales. We therefore used peptide mass fingerprinting to determine peptidic profiles in well documented baleen and evaluated the possibility of using this technique to differentiate species in baleen samples that are not adequately identified or are unidentified. We examined baleen from ten different species of whales and determined molecular markers for each species, including species-specific markers. In the case of the Bryde's whales, differences between specimens suggest distinct species or sub-species, consistent with the complex phylogeny of the species. Finally, the methodology was applied to 29 fragments of baleen excavated from archaeological sites in Labrador, Canada (representing 1500 years of whale use by prehistoric people), demonstrating a dominance of bowhead whale (Balaena mysticetus) in the archaeological assemblage and the successful application of the peptide mass fingerprinting technique to identify the species of whale in unidentified and partially degraded samples.

MeSH terms

  • Animal Structures / anatomy & histology
  • Animal Structures / chemistry*
  • Animals
  • Archaeology / instrumentation
  • Archaeology / methods
  • Biomarkers
  • Bowhead Whale / anatomy & histology
  • Bowhead Whale / classification*
  • Canada
  • Keratins / classification
  • Keratins / isolation & purification*
  • Mass Spectrometry
  • Museums
  • New Zealand
  • Peptide Mapping / methods*
  • Phylogeny*

Substances

  • Biomarkers
  • Keratins

Grants and funding

The analytical work was supported by a Burch Fellowship in Theoretical Medicine and Affiliated Sciences (Smithsonian Institution). Caroline Solazzo-2014 recipient: https://www.smithsonianofi.com/fellowship-opportunities/george-e-burch-fellowship/. The funder provided support in the form of salaries for authors [CS], but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section. Jolon Dyer employed at the company AgResearch Ltd served as adviser and contributed to the preparation of the manuscript.