Backbone cyclization of analgesic conotoxin GeXIVA facilitates direct folding of the ribbon isomer

J Biol Chem. 2017 Oct 13;292(41):17101-17112. doi: 10.1074/jbc.M117.808386. Epub 2017 Aug 28.

Abstract

Conotoxin GeXIVA inhibits the α9α10 nicotinic acetylcholine receptor (nAChR) and is analgesic in animal models of pain. α-Conotoxins have four cysteines that can have three possible disulfide connectivities: globular (CysI-CysIII and CysII-CysIV), ribbon (CysI-CysIV and CysII-CysIII), or bead (CysI-CysII and CysIII-CysIV). Native α-conotoxins preferably adopt the globular connectivity, and previous studies of α-conotoxins have focused on the globular isomers as the ribbon and bead isomers typically have lower potency at nAChRs than the globular form. A recent report showed that the bead and ribbon isomers of GeXIVA are more potent than the globular isomer, with low nanomolar half-maximal inhibitory concentrations (IC50). Despite this high potency, the therapeutic potential of GeXIVA is limited, because like most peptides, it is susceptible to proteolytic degradation and is challenging to synthesize in high yield. Here we used backbone cyclization as a strategy to improve the folding yield as well as increase the serum stability of ribbon GeXIVA while preserving activity at the α9α10 nAChR. Specifically, cyclization of ribbon GeXIVA with a two-residue linker maintained the biological activity at the human α9α10 nAChR and improved stability in human serum. Short linkers led to selective formation of the ribbon disulfide isomer without requiring orthogonal protection. Overall, this study highlights the value of backbone cyclization in directing folding, improving yields, and stabilizing conotoxins with therapeutic potential.

Keywords: conotoxin; cyclization; drug design; nicotinic acetylcholine receptors (nAChR); oxidative folding; peptide chemical synthesis; peptide conformation; protein folding; stability.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Analgesics / chemistry*
  • Conotoxins / chemistry*
  • Nuclear Magnetic Resonance, Biomolecular
  • Protein Domains
  • Protein Folding*
  • Protein Structure, Secondary

Substances

  • Analgesics
  • Conotoxins