Ethanol Decreases Inflammatory Response in Human Lung Epithelial Cells by Inhibiting the Canonical NF-kB-Pathway

Cell Physiol Biochem. 2017;43(1):17-30. doi: 10.1159/000480313. Epub 2017 Aug 24.

Abstract

Background/aims: Alcohol (ethanol, EtOH) as significant contributor to traumatic injury is linked to suppressed inflammatory response, thereby influencing clinical outcomes. Alcohol-induced immune-suppression during acute inflammation (trauma) was linked to nuclear factor-kappaB (NF-ĸB). Here, we analyzed alcohol`s effects and mechanisms underlying its influence on NF-ĸB-signaling during acute inflammation in human lung epithelial cells.

Methods: A549-cells were stimulated with interleukin (IL)-1β, or sera from trauma patients (TP) or healthy volunteers, with positive/negative blood alcohol concentrations (BAC), and subsequently exposed to EtOH (170 Mm, 1h). IL-6-release and neutrophil adhesion to A549 were analyzed. Specific siRNA-NIK mediated downregulation of non-canonical, and IKK-NBD-inhibition of canonical NF-ĸB signaling were performed. Nuclear levels of activated p50 and p52 NF-ĸB-subunits were detected using TransAm ELISA.

Results: Both stimuli significantly induced IL-6-release (39.79±4.70 vs. 0.58±0.8 pg/ml) and neutrophil adhesion (132.30±8.80 vs. 100% control, p<0.05) to A549-cells. EtOH significantly decreased IL-6-release (22.90±5.40, p<0.05) and neutrophil adherence vs. controls (105.40±14.5%, p<0.05). IL-1β-induced significant activation of canonical/p50 and non-canonical/p52 pathways. EtOH significantly reduced p50 (34.90±23.70 vs. 197.70±36.43, p<0.05) not p52 activation. Inhibition of canonical pathway was further increased by EtOH (less p50-activation), while p52 remained unaltered. Inhibition of non-canonical pathway was unchanged by EtOH.

Conclusion: Here, alcohol`s anti-inflammatory effects are mediated via decreasing nuclear levels of activated p50-subunit and canonical NF-ĸB signaling pathway.

Keywords: Alcohol; Canonical; Inflammation; Intoxication; Lung; NF-ĸB; Non-canonical; Trauma.

MeSH terms

  • A549 Cells
  • Adolescent
  • Adult
  • Aged
  • Aged, 80 and over
  • Cell Adhesion / drug effects
  • Epithelial Cells / cytology
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Ethanol / pharmacology*
  • Female
  • Humans
  • I-kappa B Kinase / metabolism
  • Interleukin-1beta / pharmacology
  • Interleukin-6 / metabolism
  • Lung / cytology
  • Lung / metabolism
  • Lung / pathology
  • Male
  • Middle Aged
  • NF-kappa B / metabolism*
  • NF-kappaB-Inducing Kinase
  • Neutrophils / cytology
  • Neutrophils / drug effects
  • Neutrophils / metabolism
  • Protein Serine-Threonine Kinases / antagonists & inhibitors
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism
  • RNA Interference
  • Signal Transduction / drug effects*
  • Wounds and Injuries / pathology
  • Young Adult

Substances

  • Interleukin-1beta
  • Interleukin-6
  • NF-kappa B
  • Ethanol
  • Protein Serine-Threonine Kinases
  • I-kappa B Kinase