In-depth characterization of valuable char obtained from hydrothermal conversion of hazelnut shells to levulinic acid

Bioresour Technol. 2017 Nov;244(Pt 1):880-888. doi: 10.1016/j.biortech.2017.08.012. Epub 2017 Aug 7.

Abstract

For the first time, the exploitation of hazelnut shells for the combined production of levulinic acid (LA) and hydrochar was investigated. The optimization of the catalytic hydrothermal treatment was performed both in autoclave and microwave reactor, approaching a maximum LA yield of ∼9-12wt%. Hydrochars recovered with high yield (∼43-47wt%) were characterized by different techniques, including elemental and proximate analysis, heating value, FT-IR, XPS, XRD, SEM-EDX, and SAA. Their "lignite-like" energetic properties make them suitable for the energy recovery within the same biorefinery plant for LA production, thus partially offsetting the cost of the entire process. Alternatively, since the synthesized hydrochars maintain high levels of oxygenated groups, they could be smartly exploited as natural sorbents for environmental applications. The proposed integrated approach makes possible to fully exploit this waste, smartly closing its biorefinery cycle in a sustainable development perspective.

Keywords: Biorefinery; Hazelnut shells; Hydrochar; Hydrothermal carbonization; Levulinic acid; Waste exploitation.

MeSH terms

  • Coal
  • Corylus*
  • Hot Temperature
  • Levulinic Acids*
  • Spectroscopy, Fourier Transform Infrared

Substances

  • Coal
  • Levulinic Acids