Property Enhancement Effects of Side-Chain-Type Naphthalene-Based Sulfonated Poly(arylene ether ketone) on Nafion Composite Membranes for Direct Methanol Fuel Cells

ACS Appl Mater Interfaces. 2017 Sep 20;9(37):32227-32236. doi: 10.1021/acsami.7b08566. Epub 2017 Sep 7.

Abstract

Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g-1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm-1 at 25 °C and 0.163 S cm-1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm-1 at 25 °C and 0.133 S cm-1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm-2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm-2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.

Keywords: Nafion; direct methanol fuel cell; proton conductivity; side-chain-type; sulfonated poly(arylene ether ketone).