Efficient and stable production of Modified Vaccinia Ankara virus in two-stage semi-continuous and in continuous stirred tank cultivation systems

PLoS One. 2017 Aug 24;12(8):e0182553. doi: 10.1371/journal.pone.0182553. eCollection 2017.

Abstract

One important aim in cell culture-based viral vaccine and vector production is the implementation of continuous processes. Such a development has the potential to reduce costs of vaccine manufacturing as volumetric productivity is increased and the manufacturing footprint is reduced. In this work, continuous production of Modified Vaccinia Ankara (MVA) virus was investigated. First, a semi-continuous two-stage cultivation system consisting of two shaker flasks in series was established as a small-scale approach. Cultures of the avian AGE1.CR.pIX cell line were expanded in the first shaker, and MVA virus was propagated and harvested in the second shaker over a period of 8-15 days. A total of nine small-scale cultivations were performed to investigate the impact of process parameters on virus yields. Harvest volumes of 0.7-1 L with maximum TCID50 titers of up to 1.0×109 virions/mL were obtained. Genetic analysis of control experiments using a recombinant MVA virus containing green-fluorescent-protein suggested that the virus was stable over at least 16 d of cultivation. In addition, a decrease or fluctuation of infectious units that may indicate an excessive accumulation of defective interfering particles was not observed. The process was automated in a two-stage continuous system comprising two connected 1 L stirred tank bioreactors. Stable MVA virus titers, and a total production volume of 7.1 L with an average TCID50 titer of 9×107 virions/mL was achieved. Because titers were at the lower range of the shake flask cultivations potential for further process optimization at large scale will be discussed. Overall, MVA virus was efficiently produced in continuous and semi-continuous cultivations making two-stage stirred tank bioreactor systems a promising platform for industrial production of MVA-derived recombinant vaccines and viral vectors.

MeSH terms

  • Animals
  • Bioreactors
  • Cell Line
  • Vaccinia virus / physiology*
  • Virus Replication*

Grants and funding

This work was supported by the Max Planck Society to FT. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.