The Proprioceptive System Masterminds Spinal Alignment: Insight into the Mechanism of Scoliosis

Dev Cell. 2017 Aug 21;42(4):388-399.e3. doi: 10.1016/j.devcel.2017.07.022.

Abstract

Maintaining posture requires tight regulation of the position and orientation of numerous spinal components. Yet, surprisingly little is known about this regulatory mechanism, whose failure may result in spinal deformity as in adolescent idiopathic scoliosis. Here, we use genetic mouse models to demonstrate the involvement of proprioception in regulating spine alignment. Null mutants for Runx3 transcription factor, which lack TrkC neurons connecting between proprioceptive mechanoreceptors and spinal cord, developed peripubertal scoliosis not preceded by vertebral dysplasia or muscle asymmetry. Deletion of Runx3 in the peripheral nervous system or specifically in peripheral sensory neurons, or of enhancer elements driving Runx3 expression in proprioceptive neurons, induced a similar phenotype. Egr3 knockout mice, lacking muscle spindles, but not Golgi tendon organs, displayed a less severe phenotype, suggesting that both receptor types may be required for this regulatory mechanism. These findings uncover a central role for the proprioceptive system in maintaining spinal alignment.

Keywords: Egr3; Golgi tendon organ; Runx3; dorsal root ganglia; idiopathic scoliosis; mouse; muscle spindle; proprioception.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Core Binding Factor Alpha 3 Subunit / genetics*
  • Early Growth Response Protein 3 / genetics*
  • Enhancer Elements, Genetic
  • Mechanoreceptors / metabolism*
  • Mechanoreceptors / physiology
  • Mice
  • Mice, Inbred C57BL
  • Muscle, Skeletal / growth & development
  • Muscle, Skeletal / metabolism
  • Muscle, Skeletal / physiology
  • Phenotype
  • Proprioception*
  • Scoliosis / genetics*
  • Spinal Cord / growth & development
  • Spinal Cord / metabolism
  • Spinal Cord / physiology

Substances

  • Core Binding Factor Alpha 3 Subunit
  • Egr3 protein, mouse
  • Runx3 protein, mouse
  • Early Growth Response Protein 3