Remineralizing effect of a zinc-hydroxyapatite toothpaste on enamel erosion caused by soft drinks: Ultrastructural analysis

J Clin Exp Dent. 2017 Jul 1;9(7):e861-e868. doi: 10.4317/jced.53790. eCollection 2017 Jul.

Abstract

Background: The aim of the present in vitro study was to evaluate the protective effects of a zinc-hydroxyapatite toothpaste on repairing enamel erosion produced by a soft drink (Coca-Cola) compared to toothpastes with and without fluoride using Scanning Electron Microscopy (SEM).

Material and methods: Fifty specimens were assigned to 5 groups of 10 specimens each. (Group 1: no erosive challenge, no toothpaste treatment, group 2: erosive challenge, no toothpaste treatment, 3: erosive challenge, toothpaste without fluoride, group 4: erosive challenge, fluoride toothpaste treatment, group 5: erosive challenge, zinc-hydroxyapatite toothpaste treatment). Repeated erosive challenges were provided by immersing bovine enamel specimens (10 per group) in a soft drink for 2 min (6mL, room temperature) at 0, 8, 24 and 32 h. After each erosive challenge, the toothpastes were applied neat onto the surface of specimens for 3 min without brushing and removed with distilled water. Between treatments the specimens were kept in artificial saliva. The surface of each specimen was imaged by SEM.

Results: Statistically significant differences were found between the samples used as control and those immersed in Coca-Cola (group 1 and 2): indeed among all groups the highest grade of damage was found in group 2. Instead the lowest grade was recorded in the samples of group 5 (Zinc hydroxyapatite toothpaste).

Conclusions: The results of this study confirmed the potential benefit the Zn-HAP technology could provide in protecting enamel from erosive acid challenges. The treatment of erosively challenged enamel with Zn-Hap toothpaste showed a clear protective effect. Key words:Dental erosion, enamel, SEM, toothpaste.