Enhanced Endurance Organolead Halide Perovskite Resistive Switching Memories Operable under an Extremely Low Bending Radius

ACS Appl Mater Interfaces. 2017 Sep 13;9(36):30764-30771. doi: 10.1021/acsami.7b08197. Epub 2017 Aug 29.

Abstract

It was demonstrated that organolead halide perovskites (OHPs) show a resistive switching behavior with an ultralow electric field of a few kilovolts per centimeter. However, a slow switching time and relatively short endurance remain major obstacles for the realization of the next-generation memory. Here, we report a performance-enhanced OHP resistive switching device. To fabricate topologically and electronically improved OHP thin films, we added hydroiodic acid solution (for an additive) in the precursor solution of the OHP. With drastically improved morphology such as small grain size, low peak-to-valley depth, and precise thickness, the OHP thin films showed an excellent performance as insulating layers in Ag/CH3NH3PbI3/Pt cells, with an endurance of over 103 cycles, a high on/off ratio of 106, and an operation speed of 640 μs and without electroforming. We suggest plausible resistive switching and conduction mechanisms with current-voltage characteristics measured at various temperatures and with different top electrodes and device structures. Beyond the extended endurance, highly flexible resistive switching devices with a minimum bending radius of 5 mm create opportunities for use in flexible and wearable electronic devices.

Keywords: conducting filament; endurance; flexible; organolead halide perovskite; resistive switching memory.