Crystal structures reveal metal-binding plasticity at the metallo-β-lactamase active site of PqqB from Pseudomonas putida

J Biol Inorg Chem. 2017 Oct;22(7):1089-1097. doi: 10.1007/s00775-017-1486-8. Epub 2017 Aug 19.

Abstract

PqqB is an enzyme involved in the biosynthesis of pyrroloquinoline quinone and a distal member of the metallo-β-lactamase (MBL) superfamily. PqqB lacks two residues in the conserved signature motif HxHxDH that makes up the key metal-chelating elements that can bind up to two metal ions at the active site of MBLs and other members of its superfamily. Here, we report crystal structures of PqqB bound to Mn2+, Mg2+, Cu2+, and Zn2+. These structures demonstrate that PqqB can still bind metal ions at the canonical MBL active site. The fact that PqqB can adapt its side chains to chelate a wide spectrum of metal ions with different coordination features on a uniform main chain scaffold demonstrates its metal-binding plasticity. This plasticity may provide insights into the structural basis of promiscuous activities found in ensembles of metal complexes within this superfamily. Furthermore, PqqB belongs to a small subclass of MBLs that contain an additional CxCxxC motif that binds a structural Zn2+. Our data support a key role for this motif in dimerization.

Keywords: Metal-binding plasticity; Metallo-β-lactamase; PQQ; PqqB; Pyrroloquinoline quinone; X-ray crystallography.

MeSH terms

  • Bacterial Proteins / chemistry
  • Bacterial Proteins / metabolism*
  • Binding Sites
  • Catalytic Domain
  • Crystallography, X-Ray
  • Humans
  • Metals / chemistry
  • Metals / metabolism*
  • Models, Molecular
  • PQQ Cofactor / metabolism
  • Protein Binding
  • Protein Conformation
  • Pseudomonas Infections / microbiology
  • Pseudomonas putida / chemistry
  • Pseudomonas putida / enzymology*
  • Pseudomonas putida / metabolism
  • beta-Lactamases / chemistry
  • beta-Lactamases / metabolism*

Substances

  • Bacterial Proteins
  • Metals
  • PQQ Cofactor
  • PqqB protein, Pseudomonas putida
  • beta-Lactamases