Melatonin increases the effect of 5-fluorouracil-based chemotherapy in human colorectal adenocarcinoma cells in vitro

Mol Cell Biochem. 2018 Mar;440(1-2):43-51. doi: 10.1007/s11010-017-3154-2. Epub 2017 Aug 17.

Abstract

Melatonin has antitumor activity via several mechanisms including its anti-proliferative and pro-apoptotic effects. Moreover, it has been proven that melatonin in combination with chemotherapeutic agents enhances chemotherapy-triggered apoptosis in several types of cancer. Therefore, this study was intended to evaluate whether melatonin is able to strengthen the anti-cancer potential of different chemotherapeutic drugs in human colorectal adenocarcinoma HT-29 cells. We found that treatment with 20 µM cisplatin (CIS) or 1 mM 5-fluorouracil (5-FU) for 72 h induced a decrease in HT-29 cell viability. Furthermore, 1 mM melatonin significantly (P < 0.05) increased the cytotoxic effects of 5-FU. Likewise, simultaneous stimulation with 1 mM melatonin and 1 mM 5-FU significantly (P < 0.05) enhanced the ratio of cells with an overproduction of intracellular reactive oxygen species and substantially augmented the population of apoptotic cells compared to the treatment with 5-FU alone. Nonetheless, melatonin only displayed moderate chemosensitizing effects in CIS-treated HT-29 cells, as suggested by a slight increment in the fraction of early apoptotic cells that was observed only after 48 h. Consistently, co-stimulation of HT-29 cells with 20 µM CIS or 1 mM 5-FU in the presence of 1 mM melatonin further increased caspase-3 activation. Apart from this, the cytostatic activity displayed by CIS due to S phase arrest was not affected by concomitant stimulation with melatonin. Overall, our results indicate that melatonin increases the sensitivity of HT-29 cells to 5-FU treatment and, consequently, the indolamine could be potentially applied to colorectal adenocarcinoma treatment as a potent chemosensitizing agent.

Keywords: 5-fluorouracil; Apoptosis; Colon cancer; Melatonin; Reactive oxygen species.

MeSH terms

  • Adenocarcinoma / drug therapy*
  • Adenocarcinoma / metabolism
  • Adenocarcinoma / pathology
  • Cell Line, Tumor
  • Colorectal Neoplasms / drug therapy*
  • Colorectal Neoplasms / metabolism
  • Colorectal Neoplasms / pathology
  • Fluorouracil / pharmacology*
  • Humans
  • Melatonin / pharmacology*

Substances

  • Melatonin
  • Fluorouracil