Synthesis and optical and electrochemical properties of a phenanthrodithiophene (fused-bibenzo[c]thiophene) derivative

Org Biomol Chem. 2017 Sep 13;15(35):7302-7307. doi: 10.1039/c7ob01695f.

Abstract

We designed and developed a fused-bibenzo[c]thiophene, namely, 2,9-bis(tert-butyldimethylsilyl)phenanthro[9,8-bc:10,1-b'c']dithiophene (PHDT-Si), as a new π-building block in the emitters, photosensitizers and semiconductors for organic optoelectronic devices. Based on photophysical (photoabsorption, fluorescence and time-resolved fluorescence spectroscopy) and electrochemical measurements (cyclic voltammetry), and density functional theory (DFT) calculations, this work reveals that the fused-bibenzo[c]thiophene PHDT-Si, which is prepared by an efficient synthesis method, has a rigid, high planar and expanded π-conjugation structure, and possesses intense photoabsorption and fluorescence properties (λ = 598 nm (εmax = 41 000 M-1 cm-1) and λ = 613 nm (Φf = 0.74) in toluene) in the long-wavelength region and undergoes an electrochemically reversible oxidation process, compared to non-fused 1,1'-bis(tert-butyldimethylsilyl)-4,4'-bibenzo[c]thiophene (BBT-Si).