National-scale cropland mapping based on spectral-temporal features and outdated land cover information

PLoS One. 2017 Aug 17;12(8):e0181911. doi: 10.1371/journal.pone.0181911. eCollection 2017.

Abstract

The lack of sufficient ground truth data has always constrained supervised learning, thereby hindering the generation of up-to-date satellite-derived thematic maps. This is all the more true for those applications requiring frequent updates over large areas such as cropland mapping. Therefore, we present a method enabling the automated production of spatially consistent cropland maps at the national scale, based on spectral-temporal features and outdated land cover information. Following an unsupervised approach, this method extracts reliable calibration pixels based on their labels in the outdated map and their spectral signatures. To ensure spatial consistency and coherence in the map, we first propose to generate seamless input images by normalizing the time series and deriving spectral-temporal features that target salient cropland characteristics. Second, we reduce the spatial variability of the class signatures by stratifying the country and by classifying each stratum independently. Finally, we remove speckle with a weighted majority filter accounting for per-pixel classification confidence. Capitalizing on a wall-to-wall validation data set, the method was tested in South Africa using a 16-year old land cover map and multi-sensor Landsat time series. The overall accuracy of the resulting cropland map reached 92%. A spatially explicit validation revealed large variations across the country and suggests that intensive grain-growing areas were better characterized than smallholder farming systems. Informative features in the classification process vary from one stratum to another but features targeting the minimum of vegetation as well as short-wave infrared features were consistently important throughout the country. Overall, the approach showed potential for routinely delivering consistent cropland maps over large areas as required for operational crop monitoring.

MeSH terms

  • Crops, Agricultural*
  • Geographic Information Systems
  • Geographic Mapping*
  • Geography
  • Models, Theoretical
  • Reproducibility of Results
  • South Africa

Grants and funding

The research was conducted in the framework of the SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and Its Impact on the Environment in Support of GEOGLAM) project funded by the European Commission in the Seventh Programme for research, technological development and demonstration under grant agreement No. 603719. Computational resources have been provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.