Two-magnon scattering in the 5d all-in-all-out pyrochlore magnet Cd2Os2O7

Nat Commun. 2017 Aug 15;8(1):251. doi: 10.1038/s41467-017-00228-w.

Abstract

5d pyrochlore oxides with all-in-all-out magnetic order are prime candidates for realizing strongly correlated, topological phases of matter. Despite significant effort, a full understanding of all-in-all-out magnetism remains elusive as the associated magnetic excitations have proven difficult to access with conventional techniques. Here we report a Raman spectroscopy study of spin dynamics in the all-in-all-out magnetic state of the 5d pyrochlore Cd2Os2O7. Through a comparison between the two-magnon scattering and spin-wave theory, we confirm the large single ion anisotropy in this material and show that the Dzyaloshinskii-Moriya and exchange interactions play a significant role in the spin-wave dispersions. The Raman data also reveal complex spin-charge-lattice coupling and indicate that the metal-insulator transition in Cd2Os2O7 is Lifshitz-type. Our work establishes Raman scattering as a simple and powerful method for exploring the spin dynamics in 5d pyrochlore magnets.Pyrochlore 5d transition metal oxides are expected to have interesting forms of magnetic order but are hard to study with conventional probes. Here the authors show that Raman scattering can be used to measure magnetic excitations in Cd2Os2O7 and that it exhibits complex spin-charge-lattice coupling.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.