Increase in the Magnetic Ordering Temperature (Tc) as a Function of the Applied Pressure for A2Mn[Mn(CN)6] (A = K, Rb, Cs) Prussian Blue Analogues

Inorg Chem. 2017 Sep 5;56(17):10452-10457. doi: 10.1021/acs.inorgchem.7b01402. Epub 2017 Aug 15.

Abstract

Magnetization measurements under pressure reveal that the external hydrostatic pressure significantly increases in the ferrimagnetic transition temperature, Tc, for A2Mn[Mn(CN)6] (A = K, Rb, Cs). In the case of monoclinic A = K and Rb, dTc/dp values are 21.2 and 14.6 K GPa-1, respectively, and Tc increases by 53 and 39%, respectively, from ambient pressure to 1.0 GPa. The cubic A = Cs compound also shows a monotonous increase with an initial rate of 4.22 K GPa-1 and about 11.4 K GPa-1 above 0.6 GPa, and an overall Tc increase by 26% at 1.0 GPa. The increase in Tc is attributed to deformation of the structure such that the MnII-N≡C angle decreases with increasing pressure. The smaller the alkali cation, the greater the decrease in the MnII-N≡C angle induced by pressure and the larger the increase of dTc/dp. This is in accordance with the ambient-pressure structures for A2Mn[Mn(CN)6] (A = K, Rb, Cs), which have decreasing MnII-N≡C angles that correlate to the observed increasing Tcs as K > Rb > Cs. The large increase in Tc for the A = K compound is the highest class among several cyano-bridged metal complexes. The tuning of the transition temperature by such a weak pressure may lead to additional applications such as switching devices.