A Vision for Incorporating Environmental Effects into Nitrogen Management Decision Support Tools for U.S. Maize Production

Front Plant Sci. 2017 Jul 28:8:1270. doi: 10.3389/fpls.2017.01270. eCollection 2017.

Abstract

Meeting crop nitrogen (N) demand while minimizing N losses to the environment has proven difficult despite significant field research and modeling efforts. To improve N management, several real-time N management tools have been developed with a primary focus on enhancing crop production. However, no coordinated effort exists to simultaneously address sustainability concerns related to N losses at field- and regional-scales. In this perspective, we highlight the opportunity for incorporating environmental effects into N management decision support tools for United States maize production systems by integrating publicly available crop models with grower-entered management information and gridded soil and climate data in a geospatial framework specifically designed to quantify environmental and crop production tradeoffs. To facilitate advances in this area, we assess the capability of existing crop models to provide in-season N recommendations while estimating N leaching and nitrous oxide emissions, discuss several considerations for initial framework development, and highlight important challenges related to improving the accuracy of crop model predictions. Such a framework would benefit the development of regional sustainable intensification strategies by enabling the identification of N loss hotspots which could be used to implement spatially explicit mitigation efforts in relation to current environmental quality goals and real-time weather conditions. Nevertheless, we argue that this long-term vision can only be realized by leveraging a variety of existing research efforts to overcome challenges related to improving model structure, accessing field data to enhance model performance, and addressing the numerous social difficulties in delivery and adoption of such tool by stakeholders.

Keywords: corn; crop models; in-season nitrogen management; leaching; nutrient recommendation.