Electrochemically active microorganisms from an acid mine drainage-affected site promote cathode oxidation in microbial fuel cells

Bioelectrochemistry. 2017 Dec:118:139-146. doi: 10.1016/j.bioelechem.2017.07.013. Epub 2017 Aug 3.

Abstract

The limited database of acidophilic or acidotolerant electrochemically active microorganisms prevents advancements on microbial fuel cells (MFCs) operated under low pH. In this study, three MFCs were used to enrich cathodic biofilms using acid mine drainage (AMD) sediments as inoculum. Linear sweep voltammetry showed cathodic current plateaus of 5.5 (±0.7) mA at about -170mV vs Ag/AgCl and 8.5 (±0.9) mA between -500mV to -450mV vs Ag/AgCl for biofilms developed on small graphite fiber brushes. After gamma irradiation, biocathodes exhibited a decrease in current density approaching that of abiotic controls. Electrochemical impedance spectroscopy showed six-fold lower charge transfer resistance with viable biofilm. Pyrosequencing data showed that Proteobacteria and Firmicutes dominated the biofilms. Acidithiobacillus representatives were enriched in some biocathodes, supporting the potential importance of these known iron and sulfur oxidizers as cathodic biocatalysts. Other acidophilic chemolithoautotrophs identified included Sulfobacillus and Leptospirillum species. The presence of chemoautotrophs was consistent with functional capabilities predicted by PICRUSt related to carbon fixation pathways in prokaryotic microorganisms. Acidophilic or acidotolerant heterotrophs were also abundant; however, their contribution to cathodic performance is unknown. This study directs subsequent research efforts to particular groups of AMD-associated bacteria that are electrochemically active on cathodes.

Keywords: BESs; Biocathodes; Exoelectrotrophs; Iron oxidizers; Lithotrophs.

MeSH terms

  • Bacteria / metabolism*
  • Bioelectric Energy Sources / microbiology*
  • Biofilms*
  • Electrochemistry
  • Electrodes
  • Hydrogen-Ion Concentration
  • Industrial Waste*
  • Mining*
  • Oxidation-Reduction

Substances

  • Industrial Waste