NMR spectroscopy study of local correlations in water

J Chem Phys. 2016 Dec 7;145(21):214503. doi: 10.1063/1.4968589.

Abstract

Using nuclear magnetic resonance we study the dynamics of the hydrogen bond (HB) sub-domains in bulk and emulsified water across a wide temperature range that includes the supercooled regime. We measure the proton spin-lattice T1 and spin-spin T2 relaxation times to understand the hydrophilic interactions that determine the properties of water. We use (i) the Bloembergen, Purcell, and Pound approach that focuses on a single characteristic correlation time τc, and (ii) the Powles and Hubbard approach that measures the proton rotational time τθ. We find that when the temperature is low both relaxation times are strongly correlated when the HB lifetime is long, and that when the temperature is high a decrease in the HB lifetime destroys the water clusters and decouples the dynamic modes of the system.