Liquefied Wood as Inexpensive Precursor-Feedstock for Bio-Mediated Incorporation of (R)-3-Hydroxyvalerate into Polyhydroxyalkanoates

Materials (Basel). 2015 Sep 23;8(9):6543-6557. doi: 10.3390/ma8095321.

Abstract

Liquefied wood (LW) prepared in a microwave process was applied as a novel; inexpensive precursor feedstock for incorporation of (R)-3-hydroxyvalerate (3HV) into polyhydroxyalkanoate (PHA) biopolyesters in order to improve the biopolyester's material quality; Cupriavidus necator was applied as microbial production strain. For proof of concept, pre-experiments were carried out on a shake flask scale using different mixtures of glucose and LW as carbon source. The results indicate that LW definitely acts as a 3HV precursor, but, at the same time, displays toxic effects on C. necator at concentrations exceeding 10 g/L. Based on these findings, PHA biosynthesis under controlled conditions was performed using a fed-batch feeding regime on a bioreactor scale. As major outcome, a poly(3HB-co-0.8%-3HV) copolyester was obtained displaying a desired high molar mass of Mw = 5.39 × 10⁵ g/mol at low molar-mass dispersity (ĐM of 1.53), a degree of crystallinity (Xc) of 62.1%, and melting temperature Tm (176.3 °C) slightly lower than values reported for poly([R]-3-hydroxybutyrate) (PHB) homopolyester produced by C. necator; thus, the produced biopolyester is expected to be more suitable for polymer processing purposes.

Keywords: (R)-3-Hydroxyvalerate (3HV); biopolymers; copolyester; liquefied wood; polyhydroxyalkanoates (PHA); precursor substrates.