Reactive Fe-Sites in Ni/Fe (Oxy)hydroxide Are Responsible for Exceptional Oxygen Electrocatalysis Activity

J Am Chem Soc. 2017 Aug 23;139(33):11361-11364. doi: 10.1021/jacs.7b07117. Epub 2017 Aug 15.

Abstract

Fe is a critical component of record-activity Ni/Fe (oxy)hydroxide (Ni(Fe)OxHy) oxygen evolution reaction (OER) catalysts, yet its precise role remains unclear. We report evidence for different types of Fe species within Ni(Fe)OxHy- those that are rapidly incorporated into the Ni oxyhydroxide from Fe cations in solution (and that are likely at edges or defects) and are responsible for the enhanced OER activity, and those substituting for bulk Ni that modulate the observed Ni voltammetry. These results suggest that the exceptional OER activity of Ni(Fe)OxHy does not depend on Fe in the bulk or on average electrochemical properties of the Ni cations measured by voltammetry, and instead emphasize the role of the local structure.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't