Simultaneously simulating the scattering properties of nonspherical aerosol particles with different sizes by the MRTD scattering model

Opt Express. 2017 Jul 24;25(15):17872-17891. doi: 10.1364/OE.25.017872.

Abstract

In order to improve the computational efficiency of multi-resolution time domain (MRTD) scattering model, a multi-size synchronous-computational scheme (MSCS) is proposed. By using MSCS, the scattering properties of the particles with different sizes can be simultaneously calculated by MRTD model in one wave-particle interaction simulation. In this model, the pulse plane wave with a wide spectrum is taken as the incident light, and the light scattering simulation for particles with different sizes is transformed into the scattering calculation for a size-fixed particle at different wavelengths. To guarantee the stability and precision of the improved MRTD (IMRTD) model, the method to design model's input parameters, such as the spatial resolution, discrete time interval and pulse width, is proposed. To validate the accuracy of IMRTD model, its results are compared with those of Mie and T-Matrix theory, and the influence of spatial resolution on the precision of IMRTD is analyzed as well. At last, model's computational efficiency is also discussed. The simulation results show that, IMRTD method can calculate the scattering parameters of particles with different sizes simultaneously and accurately, where, in case that the pulse width is 5.56 × 10-8ns, and the radius of the size-fixed particle is 0.5μm (its size parameter is 6.28), light scattering process by particles with size parameters up to 12.56 can be successfully simulated. With the increasing of spatial resolution, the simulation accuracy is improved for all particles, and the improvement for large particles is more notable than that for small ones. It can also be found that the computational efficiency of IMRTD is much higher than that of traditional version.