Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution

Opt Express. 2017 Jun 26;25(13):14494-14503. doi: 10.1364/OE.25.014494.

Abstract

Nowadays, wide-field of view plasmonic structured illumination method (WFPSIM) has been extensively studied and experimentally demonstrated in biological researches. Normally, noble metal structures are used in traditional WFPSIM to support ultra-high wave-vector of SPs and an imaging resolution enhancement of 3-4 folds can be achieved. To further improve the imaging resolution of WFPSIM, we hereby propose a wide-field optical nanoimaging method based on a hybrid graphene on meta-surface structure (GMS) model. It is found that an ultra-high wave-vector of graphene SPs can be excited by a metallic nanoslits array with localized surface plasmon enhancement. As a result, a standing wave surface plasmons (SW-SPs) interference pattern with a period of 11 nm for a 980 nm incident wavelength can be obtained. The potential application of the GMS for wide-field of view super-resolution imaging is discussed followed by simulation results which show that an imaging resolution of sub-10 nm can be achieved. The demonstrated method paves a new route for wide field optical nanoimaging, with applications e.g. in biological research to study biological processes occurring in cell membrane.