Mechanical Properties of Cu₂O Thin Films by Nanoindentation

Materials (Basel). 2013 Oct 11;6(10):4505-4513. doi: 10.3390/ma6104505.

Abstract

In this study, the structural and nanomechanical properties of Cu₂O thin films are investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and nanoindentation techniques. The Cu₂O thin films are deposited on the glass substrates with the various growth temperatures of 150, 250 and 350 °C by using radio frequency magnetron sputtering. The XRD results show that Cu₂O thin films are predominant (111)-oriented, indicating a well ordered microstructure. In addition, the hardness and Young's modulus of Cu₂O thin films are measured by using a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. Results indicated that the hardness and Young's modulus of Cu₂O thin films decreased as the growth temperature increased from 150 to 350 °C. Furthermore, the relationship between the hardness and films grain size appears to closely follow the Hall-Petch equation.

Keywords: AFM; Cu2O thin film; SEM; XRD; hardness; nanoindentation.