Phosphomolybdic acid-responsive Pickering emulsions stabilized by ionic liquid functionalized Janus nanosheets

J Colloid Interface Sci. 2017 Dec 1:507:74-82. doi: 10.1016/j.jcis.2017.07.097. Epub 2017 Jul 27.

Abstract

A type of ionic liquid functionalized high-aspect-ratio Janus SiO2 nanosheets (IL-Janus nanosheets), which possesses a side terminated by imidazolin salt groups and the opposite side terminated by phenyl groups, was prepared and its emulsification performance was investigated. The surface wettability of ionic liquid functionalized side could be tailored via simple anion exchanging, giving the amphiphilic or totally hydrophobic Janus nanosheets. The influence of several parameters including surface wettability, particle concentration, oil composition, oil-water ratio as well as initial location of the nanosheets on the stability, morphology and type of the Pickering emulsions (O/W or W/O) stabilized by the amphiphilic IL-Janus nanosheets was evaluated. The research results revealed that average emulsion droplets size was decreased with increase of nanosheets concentration below a concentration value but had almost no change beyond the concentration; catastrophic phase inversion phenomenon occurred by varying volume fraction of water phase in the oil-water systems, and transitional phase inversion could be achieved by in-situ exchanging Cl- anion of the IL-Janus nanosheets with phosphomolybdate H2PMo12O40-. The responsiveness of Pickering emulsions towards phosphomolybdic acid is resulted from irreversible anion exchanging of Cl- by H2PMo12O40- and the variation of surface wettability of the nanosheets.

Keywords: Ionic liquid; Janus nanosheet; Phase inversion; Phosphomolybdic acid; Pickering emulsion.