High-Spin Iron Imido Complexes Competent for C-H Bond Amination

J Am Chem Soc. 2017 Aug 30;139(34):12043-12049. doi: 10.1021/jacs.7b06682. Epub 2017 Aug 18.

Abstract

Reduction of previously reported (ArL)FeCl with potassium graphite furnished a low-spin (S = 1/2) iron complex (ArL)Fe which features an intramolecular η6-arene interaction and can be utilized as an FeI synthon (ArL = 5-mesityl-1,9-(2,4,6-Ph3C6H2)dipyrrin). Treatment of (ArL)Fe with adamantyl azide or mesityl azide led to the formation of the high-spin (S = 5/2), three-coordinate imidos (ArL)Fe(NAd) and (ArL)Fe(NMes), respectively, as determined by EPR, zero-field 57Fe Mössbauer, magnetometry, and single crystal X-ray diffraction. The high-spin iron imidos are reactive with a variety of substrates: (ArL)Fe(NAd) reacts with azide yielding a ferrous tetrazido (ArL)Fe(κ2-N4Ad2), undergoes intermolecular nitrene transfer to phosphine, abstracts H atoms from weak C-H bonds (1,4-cyclohexadiene, 2,4,6-tBu3C6H2OH) to afford ferrous amido product (ArL)Fe(NHAd), and can mediate intermolecular C-H amination of toluene [PhCH3/PhCD3 kH/kD: 15.5(3); PhCH2D kH/kD: 11(1)]. The C-H bond functionalization reactivity is rationalized from a two-step mechanism wherein each step occurs via maximal energy and orbital overlap between the imido fragment and the C-H bond containing substrate.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amination
  • Crystallography, X-Ray
  • Electrons
  • Ferric Compounds / chemical synthesis
  • Ferric Compounds / chemistry*
  • Imides / chemical synthesis
  • Imides / chemistry*
  • Ligands
  • Models, Molecular

Substances

  • Ferric Compounds
  • Imides
  • Ligands