Kindlin-2 Association with Rho GDP-Dissociation Inhibitor α Suppresses Rac1 Activation and Podocyte Injury

J Am Soc Nephrol. 2017 Dec;28(12):3545-3562. doi: 10.1681/ASN.2016091021. Epub 2017 Aug 3.

Abstract

Alteration of podocyte behavior is critically involved in the development and progression of many forms of human glomerular diseases. The molecular mechanisms that control podocyte behavior, however, are not well understood. Here, we investigated the role of Kindlin-2, a component of cell-matrix adhesions, in podocyte behavior in vivo Ablation of Kindlin-2 in podocytes resulted in alteration of actin cytoskeletal organization, reduction of the levels of slit diaphragm proteins, effacement of podocyte foot processes, and ultimately massive proteinuria and death due to kidney failure. Through proteomic analyses and in vitro coimmunoprecipitation experiments, we identified Rho GDP-dissociation inhibitor α (RhoGDIα) as a Kindlin-2-associated protein. Loss of Kindlin-2 in podocytes significantly reduced the expression of RhoGDIα and resulted in the dissociation of Rac1 from RhoGDIα, leading to Rac1 hyperactivation and increased motility of podocytes. Inhibition of Rac1 activation effectively suppressed podocyte motility and alleviated the podocyte defects and proteinuria induced by the loss of Kindlin-2 in vivo Our results identify a novel Kindlin-2-RhoGDIα-Rac1 signaling axis that is critical for regulation of podocyte structure and function in vivo and provide evidence that it may serve as a useful target for therapeutic control of podocyte injury and associated glomerular diseases.

Keywords: Kindlin-2; Rac1; RhoGDIα; Slit diaphragms; podocyte.

MeSH terms

  • Albuminuria / metabolism
  • Animals
  • Apoptosis
  • Cell Movement
  • Creatinine / analysis
  • Cytoskeletal Proteins / genetics
  • Cytoskeletal Proteins / metabolism*
  • Disease Progression
  • Female
  • Fibrosis
  • Genotype
  • Humans
  • Kidney Glomerulus / pathology
  • Male
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism*
  • Mice
  • Mice, Knockout
  • Muscle Proteins / genetics
  • Muscle Proteins / metabolism*
  • Neoplasm Proteins / genetics
  • Neoplasm Proteins / metabolism*
  • Neuropeptides / metabolism*
  • Podocytes / metabolism*
  • RNA, Small Interfering / metabolism
  • Renal Insufficiency / pathology
  • Signal Transduction
  • rac1 GTP-Binding Protein / metabolism*
  • rho Guanine Nucleotide Dissociation Inhibitor alpha / metabolism*

Substances

  • Cytoskeletal Proteins
  • FERMT3 protein, human
  • Membrane Proteins
  • Muscle Proteins
  • Neoplasm Proteins
  • Neuropeptides
  • RAC1 protein, human
  • RNA, Small Interfering
  • Rac1 protein, mouse
  • kindlin-2 protein, mouse
  • rho Guanine Nucleotide Dissociation Inhibitor alpha
  • Creatinine
  • rac1 GTP-Binding Protein