Suitability of Secondary PEEK Telescopic Crowns on Zirconia Primary Crowns: The Influence of Fabrication Method and Taper

Materials (Basel). 2016 Nov 8;9(11):908. doi: 10.3390/ma9110908.

Abstract

This study investigates the retention load (RL) between ZrO₂ primary crowns and secondary polyetheretherketone (PEEK) crowns made by different fabrication methods with three different tapers. Standardized primary ZrO₂ crowns were fabricated with three different tapers: 0°, 1°, and 2° (n = 10/group). Ten secondary crowns were fabricated (i) milled from breCam BioHPP blanks (PM); (ii) pressed from industrially fabricated PEEK pellets (PP) (BioHPP Pellet); or (iii) pressed from granular PEEK (PG) (BioHPP Granulat). One calibrated operator adjusted all crowns. In total, the RL of 90 secondary crowns were measured in pull-off tests at 50 mm/min, and each specimen was tested 20 times. Two- and one-way ANOVAs followed by a Scheffé's post-hoc test were used for data analysis (p < 0.05). Within crowns with a 0° taper, the PP group showed significantly higher retention load values compared with the other groups. Among the 1° taper, the PM group presented significantly lower retention loads than the PP group. However, the pressing type had no impact on the results. Within the 2° taper, the fabrication method had no influence on the RL. Within the PM group, the 2° taper showed significantly higher retention load compared with the 1° taper. The taper with 0° was in the same range value as the 1° and 2° tapers. No impact of the taper on the retention value was observed between the PP groups. Within the PG groups, the 0° taper presented significantly lower RL than the 1° taper, whereas the 2° taper showed no differences. The fabrication method of the secondary PEEK crowns and taper angles showed no consistent effect within all tested groups.

Keywords: computer-aided design/computer-aided manufacturing (CAD/CAM); polyetheretherketone (PEEK); retention load (RL); telescopic crowns; zirconia.