A Multi-Level Decision Fusion Strategy for Condition Based Maintenance of Composite Structures

Materials (Basel). 2016 Sep 21;9(9):790. doi: 10.3390/ma9090790.

Abstract

In this work, a multi-level decision fusion strategy is proposed which weighs the Value of Information (VoI) against the intended functions of a Structural Health Monitoring (SHM) system. This paper presents a multi-level approach for three different maintenance strategies in which the performance of the SHM systems is evaluated against its intended functions. Level 1 diagnosis results in damage existence with minimum sensors covering a large area by finding the maximum energy difference for the guided waves propagating in pristine structure and the post-impact state; Level 2 diagnosis provides damage detection and approximate localization using an approach based on Electro-Mechanical Impedance (EMI) measures, while Level 3 characterizes damage (exact location and size) in addition to its detection by utilising a Weighted Energy Arrival Method (WEAM). The proposed multi-level strategy is verified and validated experimentally by detection of Barely Visible Impact Damage (BVID) on a curved composite fuselage panel.

Keywords: SHM; condition based monitoring; damage detection and characterization; electro-mechanical impedance; guided waves; maintenance strategy; piezoelectric transducers.