Finite Element Simulation for Analysing the Design and Testing of an Energy Absorption System

Materials (Basel). 2016 Aug 5;9(8):660. doi: 10.3390/ma9080660.

Abstract

It is not uncommon to use profiles to act as energy absorption parts in vehicle safety systems. This work analyses an impact attenuator based on a simple design and discusses the use of a thermoplastic material. We present the design of the impact attenuator and a mechanical test for the prototype. We develop a simulation model using the finite element method and explicit dynamics, and we evaluate the most appropriate mesh size and integration for describing the test results. Finally, we consider the performance of different materials, metallic ones (steel AISI 4310, Aluminium 5083-O) and a thermoplastic foam (IMPAXX500™). This reflects the car industry's interest in using new materials to make high-performance, low-mass energy absorbers. We show the strength of the models when it comes to providing reliable results for large deformations and strong non-linearities, and how they are highly correlated with respect to the test results both in value and behaviour.

Keywords: energy absorption system; explicit dynamics; finite element method; impact attenuator; thermoplastic foam.