Gold Nanoparticle-Mediated Delivery of Molecules into Primary Human Gingival Fibroblasts Using ns-Laser Pulses: A Pilot Study

Materials (Basel). 2016 May 20;9(5):397. doi: 10.3390/ma9050397.

Abstract

Interaction of gold nanoparticles (AuNPs) in the vicinity of cells' membrane with a pulsed laser (λ = 532 nm, τ = 1 ns) leads to perforation of the cell membrane, thereby allowing extracellular molecules to diffuse into the cell. The objective of this study was to develop an experimental setting to deliver molecules into primary human gingival fibroblasts (pHFIB-G) by using ns-laser pulses interacting with AuNPs (study group). To compare the parameters required for manipulation of pHFIB-G with those needed for cell lines, a canine pleomorphic adenoma cell line (ZMTH3) was used (control group). Non-laser-treated cells incubated with AuNPs and the delivery molecules served as negative control. Laser irradiation (up to 35 mJ/cm²) resulted in a significant proportion of manipulated fibroblasts (up to 85%, compared to non-irradiated cells: p < 0.05), while cell viability (97%) was not reduced significantly. pHFIB-G were perforated as efficiently as ZMTH3. No significant decrease of metabolic cell activity was observed up to 72 h after laser treatment. The fibroblasts took up dextrans with molecular weights up to 500 kDa. Interaction of AuNPs and a pulsed laser beam yields a spatially selective technique for manipulation of even primary cells such as pHFIB-G in high throughput.

Keywords: gold nanoparticles; human gingival fibroblasts; laser; laser based cell manipulation.